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Abstract. This is an assignment report of Mathematics of Imaging
course. The topic is diffusion tensor imaging denoising.

1 Introduction

Fig. 1. Illustration of fiber tracking.

Diffusion tensor imaging (DTI) is a medical imaging modality that can reveal
the underlying brain anatomy of the white matter in our brain. It also provides
certain information about the brain connectivity. Thus, many algorithms have
been proposed to find the brain connectivity based on DTI, such as determinis-
tic fiber tracking (as shown in 1, probabilistic fiber tracking and geodesic track-
ing. DTI is estimated from diffusion weighted images (DWI), which has Rician
distributed noises. Since DWI is noisy, the estimated DTI also has noises, so
denoising is an important question. There are basically two types of denoising
algorithms. The first type focuses on how to estimate better DTI from noisy
DWI [3,5,1]. The second type denoise the DTI directly. One important work
is done by Pennec et al. [4], who propose a Riemannian framework for tensor
denoising, but they did not mention how to do the total variation based de-
noising. In this paper, we will focus on removing noises in DTI based on H1
regularization and total variation.



2 Method

In each grid of a DTI, there is a 3 by 3 positive definite symmetric matrix. So, a
DTI can be thought as a function f from R3 to PD(3), where PD(3) represents
the space of 3 by 3 positive definite symmetric matrix. The partial derivative of
F with respect to x at point p(x,y,2) in R? is defined by

ﬁ _ d(f(p + 6(17070)))
ox de

In finite difference, we usually set de = 1 and approximate the above partial
derivative with
of
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Both f(x 4+ 1,y,2) and f(x,y, z) are in PD(3), so the difference between f(x +
1,y,2) and f(z,y,2) are not the Euclidean difference of each component of the
matrices, and it is the Riemannian log map as shown in [2]. The Riemannian
log map between from points p to ¢ in PD(3) is represented as m The partial
derivative of R with respect to y and z is defined in the similar way. Having
the approximation of the partial derivatives, we can approximate other operator
similarly, such as Laplace operator.

2.1 H1 Regularization

As shown in the previous image denoising project. In H1 regularization, the
functional we want to minimize is

min / [VoulPdz + |l f — ul3,
u Q
where, f is the original image and u is the restored image.

Using calculus of variation, we arrive at the Euler-Lagrange equations

—Au+Af—-u)=0 onf2

(Vu,v) =0 on 0f2 e
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In (1), f —wis just uf. The Laplace operator can be approximated similarly.
Suppose we want to compute the Laplace on the following regular-square

domain.
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For example, for grid 6, the Laplace operator can be approximated by the
second order finite difference scheme

UgU7 — UsUG + UgUs — UToUG (2)

The difficulty of the above approximation (3) is that the log maps are not in
the same tangent space, so technically we can not directly compute the addition
and the subtraction. We can move the log maps to the same tangent space, do
the computation and then move the results back.

So, for grid 6, the first equation in (1) can be approximated by

—
—(ueu? — (UsUG)ug + UsUs — (UT0UG)ug) + A6 fo (3)

(1T1ij>)u6 represents the corresponding tangent vector in the tangent space of
Ue-

There is another approximation. Pennec [4] show that the approximation (2)
can also be approximated by

UgU7 + UgUs + UgUz + UsUL0,

where all log maps are in the same tangent space.
In the end, for grid 6, the first equation in (1) can also be approximated by

—
—(ugu? + ugus + uguz + ucu10) + Aug fo

2.2 Total Variation

In Total Variation Primal form, the functional we want to minimize is
min / Vauldz + M| f — ull?,
u Q

We arrive at the Euler-Lagrange equations

Vu
—div(==) + 2A(f —u) =0 on{?
[Vl (4)
(Vu,v) =0 on 0f2
The approximation of div(lg—zl) is similar to the approximation of Laplace

operator. We just need to normalize Vu before taking the divergence.

We also need to approximate the other components of the gradient in order
to do the normalization. For example, have the partial derivative with respect
to x, 1?11% we need to approximate the partial derivative with respect to y. I
approximate it with the average of ugus and (m)uﬁ.



The approximation of the first equation in (4) is

_ ( W _ (m)ua
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The norm of a log map X, || X ||, is defined by the inner product on the PD(3).
In PD(3), the inner product [2] of X and Y at point u in PD(3) is defined by

(X,Y)=tr(g7' Xu"'Y (g~ ")"),

where gg7 = u. Thus, | X|| = /(X, X).
I define the norm of (X,Y) as

(X)) = VX, X) + (YY)

For both H1 regularization and total variation, the optimization is done by
steepest gradient descent algorithm, which is the Riemannian exponential map

in PD(3).

3 Results

The H1 and Total Variation denoising algorithm is tested on real data as shown

in figure 2.
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Fig. 2. Illustration of of the real data. The left picture is the DTI visualized by su-
perquadrics. The right picture is the DTI visualized by the color coded principal eigen-

vector.



3.1 H1 Regularization

In figure 3, both the tensor fields and the vector fields look much more smoothing
than the original data.This is not surprising since H1 denoising tends to blur the
image.
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Fig. 3. Illustration of of the H1 denoising result. The left picture is the DTI visualized
by superquadrics. The right picture is the DTI visualized by the color coded principal
eigenvector.

3.2 Total Variation

The total variation based denoising results are shown in figure 4. We can see
that the results are less blurring, which are expected.
Another slice of the results is shown in figure 5.



Fig. 4. Illustration of of the total variation denoising result. The left picture is the DTT
visualized by superquadrics. The right picture is the DTI visualized by the color coded
principal eigenvector.

4 Discussion

In H1 denoising, since the gradient has a large norm (could be infinite), the H1
denoising tends to blur the image. While in total variation, the gradient has
small norm, and it can preserve the boundary. In the total variation results, we
can find some artifacts. I am not clear what’s happening, and I think there is a
better way to approximate the total variation. It is also interesting to compare
thest results with component-wise denoising.
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Fig.5. Compare the original data (middle), the H1 denoising result (top), and the
total variation denoising result (bottom). All images are visualized by the color coded
principal eigenvector.



